일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- 아두이노
- 휴머노이드 로봇
- 확산 모델
- 이미지 생성
- 티스토리챌린지
- AI 기술
- 생성형 AI
- 우분투
- tts
- 다국어 지원
- 시간적 일관성
- OpenCV
- 실시간 렌더링
- AI
- 강화 학습
- 오픈소스
- TRANSFORMER
- 오픈AI
- 멀티모달
- 트랜스포머
- LLM
- 일론 머스크
- PYTHON
- ChatGPT
- 딥러닝
- 인공지능
- 메타
- LORA
- 오블완
- OpenAI
- Today
- Total
목록컴퓨터 비전 모델 (2)
AI 탐구노트

다양한 크기의 물체를 효과적으로 감지하기 위해 이미지를 슬라이스로 나누어 처리한 후 합치는 기법 객체감지 모델을 통해 작은 물체를 감지하는 것은 주로 항공, 드론, 위성 사진 등에서 찍힌 물체를 감지하는 경우에 많이 활용되며 경우에 따라서는 도로 상의 CCTV에서 원거리에 있는 물체를 판별할 때도 해당됩니다. 극히 작은 물체의 경우, 그 자체로도 감지가 쉽지 않은데 그보다 더 어려운 것은 큰 객체와 극히 작은 객체처럼 한 이미지 상에 다양한 스케일의 객체가 포함되어 있는 경우입니다. 학습할 때 이에 대한 고려가 충분히 되고 많은 데이터가 필요한 경우가 되는 것이죠. SAHI는 이미지에서 작은 물체를 감지하는데 도움이 되는 컴퓨터 비전 모델의 추론 기술입니다. 입력된 이미지에 대해 한번에 객체감지를 수행..

객체 감지나 인스턴스 분할과 같은 비전 모델은 이미지 내의 객체 위치 정보를 제공하지만 객체 간의 관계에 대한 의미적 정보가 부족하고, 이미지 캡셔닝 같은 경우는 의미적 정보는 제공되지만 위치 정보를 참조하지 않습니다. 그 결과 복합적인 작업이 필요한 경우에는 서로 다른 종류의 복수 모델을 개별적인 데이터셋을 이용해 학습하고 실행 시에도 개별적으로 구동될 수 있는 환경 구성을 하는 등의 작업이 필요하게 됩니다. Florence-2는 마이크로소프트에서 공개한 객체감지, 이미지 캡션 생성, 시맨틱 분할, 구문 분할, 영역 제안, OCR, 이미지 그라운딩(특정 영역을 설명과 매핑) 등의 작업을 하나의 모델에서 수행할 수 있는 컴퓨터 비전 모델입니다. 이미지 인코더와 다중 모달 인코더-디코더로 구조를 가지고 있..